

NEW AND NOTEWORTHY

www.springsource.com

	

	

	

	

	

SpringSource
Tool Suite

2.8.0

- New and Noteworthy -

	

	

	

	

	

	

	

	

	

Martin Lippert 2.8.0.RELEASE October 18, 2011 Updated for 2.8.0.RELEASE

NEW AND NOTEWORTHY

www.springsource.com

ENHANCEMENTS – 2.8.0
General Updates
Eclipse Indigo SR1, including support for Java 7.
STS updated the base Eclipse installation to Eclipse Indigo SR1 that comes with full Java IDE
support for Java 7.

Take a look at the details of the Java 7 support:

http://www.eclipse.org/jdt/ui/r3_8/Java7news/whats-new-java-7.html

Mylyn 3.6.2
The Mylyn version within STS is upgraded to the latest Mylyn release 3.6.2

m2e 1.0.100
STS now ships with the latest m2e version 1.0.100 that comes as part of Eclipse Indigo SR1.
The pre-build STS packages also contain compatible add-ons for WTP, AJDT and other useful
add-ons.

Since existing Maven projects that were created using previous versions of STS don’t work
anymore with the new m2e version, we provide an automatic update for those projects.

STS now detects when you have legacy Maven projects in your workspace and gives you an
opportunity to migrate them to a version compatible with STS. Some background: the m2eclipse
project released a new version in June, along with the Eclipse Indigo release train. The project
was rebranded as m2e and is now hosted on Eclipse.org. Unfortunately, the project broke
backwards compatibility with this move. At this point, a legacy m2eclipse project in a
workspace that has m2e installed will not compile and will not have any maven functionality
turned on for it. Simply right-clicking and converting to a Maven project will not work since there
will still be some legacy data in the classpath and project configuration that will cause problems.

Inside of STS, we are providing an easy way of helping users to migrate to the new version of
m2e:

1. On startup, STS will search for any legacy Maven projects in the workspace. If any are
found, the following dialog will appear:

NEW AND NOTEWORTHY

www.springsource.com

2. Additionally, this dialog will appear whenever a legacy Maven project is imported into
the workspace.

3. If you no longer want this dialog to appear, then you can tick the "Don't show this dialog
again" checkbox.

4. You can manually invoke this operation by selecting a legacy Maven project: Right click
> Configure > Convert legacy Maven Projects...

Note that after the migration, old launch configurations and some custom settings will no longer
be working.

If a team is working with different versions of STS (for example, some members on STS 2.8.0
and some on STS 2.7.2), care should be taken as once the projects have been migrated to the
latest m2e version, they won’t work with the older STS which will still be using the old version of
m2e. In this situation it is recommended that those users on STS 2.8.0 convert the legacy
projects so that they can be worked on but do not commit the updated metadata to a shared
repository (.project/.classpath). In that way the users on the older version of STS will not pick it
up by accident.

vFabric tc Server 2.6.1
STS ships now with the latest vFabric tc Server Developer Edition 2.6.1.

Maven 3.0.3
The bundled Maven version got updated to Maven 3.0.3.

NEW AND NOTEWORTHY

www.springsource.com

Spring Development Tools
Spring 3.1 profiles support
STS 2.8.0 provides support for parsing and validating Spring bean definition files based on
Spring 3.1, including the new profiles feature.

It is now possible to define the active bean profile for a bean config set to enable profile-aware
validation:

In this example we have two config sets defined for two different bean profiles. If there is a
validation problem in one of those sets, because a referenced bean is not defined for a specific
profile, STS will produce an appropriate warning:

NEW AND NOTEWORTHY

www.springsource.com

We also added more advanced hyperlinking for profile-based bean definitions. When a bean is
defined inside multiple profiles, the Spring Config Editor now shows multiple hyperlinks so user
can select the correct bean to navigate to.

Spring 3.1 c-namespace support
STS 2.8.0 adds support for the new c-namespace introduced in Spring 3.1

(http://static.springsource.org/spring/docs/3.1.x/spring-framework-
reference/html/beans.html#beans-c-namespace).

NEW AND NOTEWORTHY

www.springsource.com

Content assist has been added for c-namespace parameter names, as well as for ref-values.
Editor validation will quickly inform you if your constructor has the right number of parameters, or
if your parameter names are unrecognized. Bean ID refactorings will be picked up by c-
namespace ref-values as well.

JDK 1.7.0 and Spring Roo
There was a problem running Spring Roo on top of JDK 1.7.0. While this got fixed in Roo for
the upcoming 1.2.0.M1 version of Roo, we managed to fix this within STS as well, so that you
can now not only run Spring Roo 1.2.0.M1 on top of JDK 1.7.0, but also the latest Spring Roo
1.1.5 release.

NEW AND NOTEWORTHY

www.springsource.com

As-you-type validation and quick fixes for constructor-arg
In this milestone we added as-you-type validation and quick fixes for the name attribute in a
constructor-arg element. A warning (yellow) line appears under a name attribute that does not
match with any constructor parameter names, and Ctrl+1 brings up a list of possible parameter
names to rename to.

Groovy Eclipse
Compiler switching
Per workspace compiler selection – via command line argument

Groovy-Eclipse now makes it easier to support multiple compiler levels on one installation. To
specify a compiler level on the command line, add arguments:

sts <OTHER_ARGUMENTS> -groovy.compiler.level 18

(For Groovy 1.8.2. Use -groovy.compiler.level 17 for Groovy 1.7.10.)

It is possible to launch two workspaces simultaneously that use different compiler levels if they are
specified on the command line. Note that you must explicitly install Groovy 1.8.2 from the
update site or the STS dashboard. For more information, please see the docs.

http://docs.codehaus.org/display/GROOVY/Compiler+Switching+within+Groovy-
Eclipse#CompilerSwitchingwithinGroovy-Eclipse-Specifyingcompilerlevelonthecommandline

Groovy 1.8.2
Groovy Eclipse now has Groovy 1.8.2 available as an optional install. See the compiler
switching link above for more information on this.

Groovy-Eclipse configurator for m2e v1.0
The Groovy-Eclipse configurator for m2e (http://www.eclipse.org/m2e) is now available from
the Groovy-Eclipse update site:

http://dist.springsource.org/snapshot/GRECLIPSE/e3.7

This configurator supports m2e version 1.0 and provides first class support for your Maven and
Groovy project. This configurator supports both GMaven and the groovy-eclipse-compiler. For
more information on Groovy-Eclipse's maven support see the docs:

NEW AND NOTEWORTHY

www.springsource.com

http://docs.codehaus.org/display/GROOVY/Groovy-Eclipse+compiler+plugin+for+Maven

Recent improvements in the groovy-eclipse-compiler plugin for Maven include:

• Uses Groovy 1.8.2 by default (can be configured to use 1.7.10)
• The Java compiler is now Java 7 based (from Eclipse 3.7.1)
• No longer need to use the build helper plugin to specify the src/main/groovy and

src/test/groovy source folders. They are added automatically to the build if they exist.
• Updated groovy-eclipse-compiler archetype project. This archetype is available at:

https://nexus.codehaus.org/content/repositories/snapshots/

Remove trailing whitespace and semi-colons save actions
It is now possible to configure Groovy-Eclipse to automatically remove trailing whitespace and
semi-colons on file-save. Go to Preferences > Groovy > Save actions to enable it:

It is also necessary to enable save actions for Java editors, which you can do can do by going
to Preferences > Java > Editor > Save actions:

NEW AND NOTEWORTHY

www.springsource.com

Enabling the save action will convert this file:

into this file:

Enhanced type inferencing
We have added many small enhancements with the Groovy-Eclipse inferencing engine. A list of
all inferencing issues addressed is available here.

http://jira.codehaus.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+GRE
CLIPSE+AND+fixVersion+%3D+17434+AND+component+%3D+%22Inferencing+Engine%22+
AND+status+in+%28Resolved%2C+Closed%29+ORDER+BY+priority+DESC

Here are some highlights:

Support for multiple declaration statements

Now, multiple declaration statements are correctly inferred:

Type inferencing of DGM methods with non-collection arguments

Now, when non-collections types are targets of DGM methods, the iterator variable type is
correctly inferred:

NEW AND NOTEWORTHY

www.springsource.com

Type inferencing for match operators

The =~ and ==~ operators now have appropriate inferencing:

Spread-dot type inferencing

The spread-dot operator is now correctly handled by the inferencing engine:

DSL Support
We are continuing to improve on our DSL support in Groovy-Eclipse through our DSL descriptors.
Below are the significant enhancements.

Named parameter content assist

Methods that expect named parameters (typically specified in a DSL descriptor) can have their
named parameters filled in via content assist, as shown in this screenshot:

Notice in the screenshot that there are 3 named parameters displayed: firstName, lastName,
and age. These are defined in a DSL descriptor in the project.

(http://blog.springsource.com/2011/05/08/better-dsl-support-in-groovy-eclipse/)

As with selecting method proposals during content assist, Groovy-Eclipse will try to find
reasonable values to fill in when selecting a named parameter:

NEW AND NOTEWORTHY

www.springsource.com

There is a caveat. Named parameter proposals will not appear in the proposal list if there is a
prefix already typed. So, in the following example, there will be no named parameters
proposed since the prefix 'f' already exists:

namedParams and optionalParams for method contributions

It is now possible to distinguish between regular, named, and optional parameters in DSLD
method contributions. Regular parameters are always filled in when performing content assist for
the method and they are not prefixed by a name. Named parameters are prefixed by a name
and are also always filled in during content assist. Their position is after all the regular
parameters. Finally, optional parameters are not filled in via content assist of the method.
Instead, optional parameters are only available for content assist of named parameters. All
parameters are visible during hovers.

An example should make this clear. Consider the following simple DSLD file that add editing
support for the static 'create' method to the Person class:

currentType("Person").accept {

 method name:"create", type:"Person", params:[id:Long],

 namedParams:[firstName:String, lastName:String],

 optionalParams:[age:Integer],

 isStatic:true, provider:"Person DSL"

}

The method contribution defines params, namedParams, and optionalParams. The first thing to
see is that when doing content assist, only the regular and named parameters will be shown:

And when applying that proposal, only those parameters are displayed (the first parameter is
regular, and the second two are named):

The optional parameters are shown in hovers (along with all other parameters):

NEW AND NOTEWORTHY

www.springsource.com

They can also be seen in content assist, when named parameters would be visible:

Note that the editor is smart enough to only show parameter proposals if that parameter doesn't
already exist, so if we remove the lastName named parameter and do content assist, it will show
up as a proposal:

Static type checking
This version of Groovy-Eclipse ships with an experimental way to perform static type checking on
your Groovy projects. There is a new menu category that appears whenever any Groovy files,
packages, or projects are selected:

When invoking this command, all groovy files currently selected will be type checked (i.e., sent
to the inferencing engine). Warning markers are added to any expressions that would be
otherwise underlined in the editor:

If you want to remove all of the type check warnings simply select "Remove checks" from the
"Groovy Type Checking" menu while selecting the files you want to clean.

You can also add some type assertions to ensure that the static type of an expression is correctly
determined by the inferencing engine (this is particularly useful for testing your DSLs):

NEW AND NOTEWORTHY

www.springsource.com

This feature is still experimental and we are looking for feedback on it. If you find this feature
useful, if you have any suggestions for it, or if you have found problems with it, please contact us
on the STS forum to discuss.

http://forum.springsource.org/forumdisplay.php?32-SpringSource-Tool-Suite

User contributed inferencing property and method suggestions
There is now another way to extend Groovy-Eclipse's inferencing engine. Using quick assists
and a preferences page, users can now contribute dynamic properties and methods to existing
classes for a customized editing experience.

As seen in the image below it is now possible to invoke a Quick-Assist (CTRL-1 or CMD-1 on
macs) in order to invoke the suggestions dialog. In this example, an unresolved property called
getContentDescription in the declaring type java.util.ArrayList is referenced in a Groovy script.
The user then presses CTRL+1 on the editor selection and can add the property via the "Add
Groovy suggestion" quick assist.

NEW AND NOTEWORTHY

www.springsource.com

The Groovy Suggestions dialogue then opens, pre-populated with values related to the current
selection, like the declaring type, property name and type:

The user can add additional information like doc hovers, or change the suggestion from a
property to a method and add parameters.

Once the dialogue is closed, the suggestion is added to the Groovy Inferencing engine and the
property will now be resolved. The user can add further suggestions, edit or remove existing
ones, in the Preferences -> Groovy -> Inferencing preferences page. Additionally, a user can
activate or deactivate a suggestion by clicking a check box. Deactivating a suggestion does not
remove the suggestion from the list of suggestions for the project, but any references for that
suggestion will be unresolved until the user activates it again.

NEW AND NOTEWORTHY

www.springsource.com

Suggestions are persisted in the /.groovy/suggestions.xdsl file at the root of all Groovy projects.
Each Groovy project has it's own

suggestions.xdsl and so they can be persisted in version control for the project. As of M2, this
feature only supports edits of this file through the preference page or suggestions dialogue.
Manual edits of the file are not yet supported.

NEW AND NOTEWORTHY

www.springsource.com

The suggestions dialogue performs type validation where appropriate, as seen in the following
screen shot:

Any suggestions added to a project that are active also appear in content assist, as seen below
where getContentDescription appears as an option in content assist:

NEW AND NOTEWORTHY

www.springsource.com

Better DGM inferencing
Default Groovy Methods now have better inferencing inside of associated closure blocks. For
example, the unique DGM method now supports inferencing of the parameter on its closure:

In addition to unique all methods inside the DefaultGroovyMethods class now support inferencing
on parameters in closures where possible. A complete list is available in:

http://jira.codehaus.org/browse/GRECLIPSE-1143.

Support for DateGroovyMethods, SwingGroovyMethods, XmlGroovyMethods, and
ProcessGroovyMethods
These classes are now handled just like DefaultGroovyMethods in terms of content assist, hovers,
and navigation. For example:

XmlGroovyMethods:

ProcessGroovyMethods:

For more information, see GRECLIPSE-1131, GRECLIPSE-1143, GRECLIPSE-1145, GRECLIPSE-
1153, GRECLIPSE-1154 and GRECLIPSE-1155.

Multiple assignment statements
The types of variables assigned in multi-assignment statements are discovered during inferencing.
For example, when assigning a list to multiple variables, the static type of the list elements will be
assigned to each variable:

NEW AND NOTEWORTHY

www.springsource.com

Also, when a method returns a list or array, the type parameter or component type is used as the
type of the assigned variable:

Match operator inferencing
Match operator expressions now support inferencing:

For more information, see GRECLIPSE-1159.

Method context information
Groovy-Eclipse now follows the JDT model of displaying context information for methods when
invoking content assist inside of a method call and there is no prefix.

For example, when invoking content assist just after an opening paren, you are only shown a list
of known ways to invoke the target method:

Selecting one of the proposals will show that methods information in tooltips above the caret
location:

Similarly, invoking content assist after a comma will show context information as well:

NEW AND NOTEWORTHY

www.springsource.com

For more information, see GRECLIPSE-674.

Content assist now recognizes closure parameters
When a field has a closure for an initializer, content assist will now reflect this and show method
proposal variants for the field:

For more information, see GRECLIPSE-1139.

Fix import statements after move/copy
Import statements are now properly cleaned up after a move or copy of a Groovy file to a new
location. See GRECLIPSE-682 for more information.

More precise searching for overloaded methods
The number of parameters of method declarations are now used to help more precisely
determine the actual declaration of a method reference:

See GRECLIPSE-1138 for more information.

More precise rename refactoring of overloaded methods
This new technique for method searching is used to ensure that overloaded methods do not
interfere with rename refactoring:

NEW AND NOTEWORTHY

www.springsource.com

Editing support for Groovy files outside of the build path
Scripts that are not placed on the build path now provide many of the standard editing features
that is used by scripts on the build path, such as content assist, type inferencing, and mark
occurrences. The classpath for the script is assumed to be the same build path as the one for the
rest of the project.

Note that missing import references will not be reported, and references in scripts will not show
in search results, nor will refactoring work in these files.

Grails Development Tools
Support for Grails 2.0.0.M2
STS 2.8.0 now supports Grails 2.0.0.M2 and has been tested with snapshot builds leading up
to the not-yet-released 2.0.0.RC1.

Grails Project Explorer: Icons and element ordering improved

The Grails project explorer view has been cleaned-up:

• A new icon added for grails-app/utils
• Default ordering of elements improved based on user suggestions

The default view is now like this:

NEW AND NOTEWORTHY

www.springsource.com

Grails Project Explorer: Element order now configurable

The order of elements in the Grails Project Explorer is now a global workspace preference that
can be changed via Windows > Preferences > Groovy > Grails > Project Explorer:

Grails pergmen default raised to 192m
Default permgen size for Grails commands launched from STS has been raised to 192m
(previously 96m).

The default JVM launch arguments for running Grails commands are now:

-server -Xmx512M -XX:MaxPermSize=192m

Note that the arguments are only provided by STS if they are not already set by the existing run-
app or test-app launch configuration.

Existing launch configurations and their custom vm arguments can be inspected and changed via
the "Run" menu under: Run > Run Configurations > Grails see the Arguments tab.

Grails 2.0 output cleanup
Grails 2.0 uses ANSI control characters to make output look nicer on the command line.
Unfortunately, Eclipse Console View does not support this. This makes the Grails 2.0 output not
look as nice inside STS. For example, look at the screenshot below and note the repeated status
messages:

NEW AND NOTEWORTHY

www.springsource.com

STS now includes an output transformer that attempts to prettify this output. The screenshot below
shows what Grails 2.0 output looks like with the output transformer activated:

Should you wish to disable the output transformer for some reason, it can be found on the Grails
launch preferences page:

NEW AND NOTEWORTHY

www.springsource.com

Grails aware refactoring
Renaming of Views and Actions

A Grails aware rename participant is triggered when a controller action method or field is
renamed. (In Grails 2.0 and later, controllers actions can be defined as methods or fields.)

It performs the following kind of changes in addition to a normal Java method or field rename:

• find and rename references in g:link tags in GSP files in the same project. E.g
<g:link controller="song" action="list">

• render and redirect method calls in controller classes E.g
render(view: "list" ...)

• rename the corresponding view (gsp file). E.g.

rename views/song/list.gsp to views/song/<new-name>.gsp

Preview of a method rename refactoring, including some changes added by the Grails Aware
Refactoring Participant:

NEW AND NOTEWORTHY

www.springsource.com

A refactoring participant performing the same kinds of changes is also triggered when a view
(gsp file) is renamed.

Inferencing and navigation improvements for Grails
belongsTo, hasOne, hasMany inferencing support

References to fields implicitly defined in the belongsTo, hasOne, and hasMany domain class
fields are now available to the editor in content assist and type inferencing. This feature works
best in Grails 2.0.0.M2 and later, but is still somewhat supported in 2.0.0.M1.

As an example, the Person domain class has an implicit Pets field, which is visible in the
associated PersonController class:

Unit Testing DSL (Grails 2.0.0.M2 or later)

Many parts of the new Grails unit testing DSL and idioms are available for content assist and
inferencing. For example, the type of the value inside the @TestFor annotation is used as the
type of the controller field when testing controller classes:

NEW AND NOTEWORTHY

www.springsource.com

Grails 2.0 stack trace support

The new format for Grails stack traces, as described here:

http://grails.org/doc/2.0.0.M1/guide/introduction.html#developmentEnvironmentFeatures

is now correctly handled in the console. The references are hyperlinked and clicking on them
will navigate you to the expected line number in the expected file:

Navigation support for URL mappings (STS-599)

Control-click navigation is now available in the UrlMappings.groovy file. It is possible to
navigate from a mapping declaration to the view, controller, or action that it corresponds to. For
example CTRL-Click (or CMD-Click on Macs) on create:

Will navigate you to the create action in the PersonController class:

NEW AND NOTEWORTHY

www.springsource.com

Better content assist for dynamic finders

Validation of Grails dynamic finders will now recognize domain properties coming from abstract
domain classes. In the following example, notice how the dynamic finder refers to the name
property of the Person domain class:

Also, content assist for dynamic finders will now propose method completions where
appropriate:

Download Source Attachments
Grails 2.0.0.M2 and later provide a command that allows downloading source code for jars in
'Grails Dependencies' (works only if the source jars are indeed resolvable through ivy). STS
makes use of this command to provide a 'Download source attachments' menu item.

NEW AND NOTEWORTHY

www.springsource.com

Enhanced DSL support for Grails 2.0.0
There is now a DSL descriptor shipped with Grails 2.0.0. This provides extra editing support
when working with Grails artifacts. For example:

Grails constraints DSL (STS-1184)

Full content assist for the standard constraints block:

Invoking content assist inside of a constraint method, you can see the method context information
displayed:

GORM criteria query support (STS-580)

There is now editing support for the criteria query builder DSL in the Groovy Editor:

Grails ORM DSL support

There is now full support for the Grails ORM DSL in the static mapping field of a domain class:

NEW AND NOTEWORTHY

www.springsource.com

Enhanced dynamic finder support (STS-1982)
STS now has more complete support for dynamic finders.

GSP support (STS-1498)
Navigation to referenced controller or action in g:link tag

Pressing F3 or Ctrl-hover over an action/controller in a g:link tag will navigate you to the
definition of that action/controller:

Content assist in g:link tags

There is now content assist for relevant controllers and actions in g:link tags:

Gradle Tools
Selected Gradle project import settings are now persisted with the root project
Certain key import wizard preferences are now persisted inside the Gradle project root .settings
folder. The settings that are being persisted are:

• The list of projects imported into STS

NEW AND NOTEWORTHY

www.springsource.com

• settings related to running specific tasks before/after importing.

The settings file is found under:

<root-project-folder>/.settings/com.springsource.sts.gradle.core.import.prefs

Though the file is not intended to be edited directly by the user, it should be safe to share among
users via source control. The entries in the file are represented in such a way as to retain their
meaning relative to the root of the project hierarchy.

Comments and feedback about this feature (specifically ideas from a user's perspective) about
whether or not certain preferences should or should not be made shareable in this way are
welcome and encouraged. Please raise an STS Jira issue or comment on
https://issuetracker.springsource.com/browse/STS-2106 to provide your input.

Handle common issues caused by running the 'eclipse' tasks before importing
The import wizard now handles many common problems that may occur because of pre-existing
and conflicting eclipse configuration files. The wizard only touches those aspects of a project's
configuration that are related to what it understands (java nature, jar dependencies, project
dependencies, source folders...). Other configuration information, such as other project natures
and their related settings are, as much as possible, left intact.

This makes it possible to correctly import project types beyond just the 'pure Java' projects that
are supported directly by the current version of the Gradle Tooling API. The generated files, in
many cases, can provide the missing configuration information that is needed to make the
projects work.

New options and default option tweaks
The wizard now provides options to run tasks before and/or after projects are imported into the
workspace. The intention for these options is to allow the user to customize projects, for example,
to make up for lacking support or bugs in the current version of the tooling API or the STS Tool
support.

A common use case is to execute the 'cleanEclipse' and 'eclipse' tasks on the project before
importing. This works well in combination with the fact that the wizard now is better at dealing
with pre-existing Eclipse configuration files.

The before tasks will be executed on all projects that define them, before any projects are
imported.

The after tasks will be executed on all projects that define them, after all projects have been
imported.

Warning: with Gradle M3 it is not possible for STS to determine whether the cleanEclipse and
eclipse tasks are defined on a project. See GRADLE-1792 for details. Because of this, the option
will be disabled by default for pre M4 projects. You can still use the option with an M3 build by
explicitly enabling it. However, you must ensure that all the projects you want to import

NEW AND NOTEWORTHY

www.springsource.com

effectively have the eclipse tasks defined on them. Otherwise execution of the tasks will fail
without any tasks being executed.

Note that the default after task, 'afterEclipseImport' is not a built-in Gradle eclipse task. It is purely
intended as a hook for you to plugin any custom post processing you may want to do.

Other minor tweaks:

• 'Use Hierachical Project Names' is now deselected by default, because the 'flat' naming
scheme seems to correspond more to what most people would expect and want.

• Projects in the tree-viewer are now sorted alphabetically.

The new import wizard looks like this:

NEW AND NOTEWORTHY

www.springsource.com

Simple WTP Support
Although the Gradle Tooling API does not yet provide any support for WTP Web projects, it is
possible now to get limited support in STS by relying on running the cleanEclipse and eclipse
task before importing projects into STS.

When WTP projects are imported and the eclipse task has been executed beforehand, STS
recognizes their WTP nature and performs some customizations specific to WTP projects:

• The classpath container containing the 'Gradle Dependencies' is added to the
Deployment Assembly.

• Specific items in the classpath container that should not be deployed are recognized and
excluded.

The set of items to be excluded can be configured from a preferences page: Preferences >>
Gradle >> WTP :

Note 1: The default setup avoids common problems that are known to cause failure to deploy a
project.

Note 2: This is a temporary solution. A proper implementation would exclude dependencies from
deployment based on Gradle configuration types (e.g. test and provided dependencies should
be excluded). However, the needed information is not provided by the current version of the
Gradle Tooling API (see issue GRADLE-1777). In the mean time, this list of exclusions will help to
deploy more Gradle WTP projects successfully. Suggestions to add more patterns to the default
exclusion list are welcome.

Automatic fallback to M3
In some cases, a Gradle model build may fail because the tooling API is not able to determine
correctly what version of Gradle it should be using for your project. When a model build fails,
STS will propose to try using M3 which seems, presently, to be the most stable and widely used

NEW AND NOTEWORTHY

www.springsource.com

version of Gradle. If the option is accepted, this choice will be persisted as a workspace
preference so that all further model builds will use M3. (To cancel this, use the Gradle
Preferences page to switch back to using the "Gradle Wrapper's Default").

AspectJ/AJDT
AJDT now includes a release candidate build of AspectJ 1.6.12. In this build two options have
been turned to ON by default (minimalModel and typeDemotion). Previously these options
defaulted to OFF. These options should lead to a reduction in memory footprint for AspectJ
projects (e.g. Roo projects) in your workspace.

If you have any issues after upgrading, the settings can be turned off by specifying
–Xset:minimalModel=false,typeDemotion=false

in the project properties (in non-standard compiler options).

The release notes for AspectJ 1.6.12 are here:

http://www.eclipse.org/aspectj/doc/released/README-1612.html

Fixed Bugs and Enhancement Requests
Here is a full list of resolved bugs and enhancement requests for the 2.8.0 release:

STS Issue-Tracker:
https://issuetracker.springsource.com/secure/IssueNavigator.jspa?reset=true&jqlQuery=project
+%3D+STS+AND+fixVersion+in+%2811782%2C+11188%2C+11781%2C+11187%2C+11
185%2C+11184%29+AND+status+in+%28Resolved%2C+Closed%29

Spring IDE Issue-Tracker:

https://jira.springsource.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+I
DE+AND+fixVersion+in+%2812615%2C+12216%2C+12614%2C+12215%2C+12213%2
C+12212%29+AND+status+in+%28Resolved%2C+Closed%29

